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A detailed system theoretic description is given of NMR experiments including 
relaxation effects. The approach is based on an exact and analytical solution to the mas- 
ter equation. It is shown that NMR experiments can be described in the framework of 
bilinear time-invariant systems. This description is used to derive closed-form expres- 
sions for the spectrum of one- and two-dimensional experiments. The simulations show 
that the approach accounts for the frequency dependence of a pulse, distinguishes 
between soft and hard pulses and also explains artifacts such as axial peaks. 

1. I n t r o d u c t i o n  

In this paper  we present a formulat ion of  N M R  experiments in the language of  
systems theory. Systems theory has played a major  role in such areas as control  the- 
ory, econometrics  and signal processing (see e.g. [1-3]). In particular,  state space 
methods  have proven to be very suitable tools for the modelling and analysis o f  a 
large array of  applications. One of  the main reasons for the success of  these meth- 
ods is that  using state space theory many problems can be translated to equivalent 
problems in linear algebra and can therefore be analyzed using the powerful  theore- 
tical and numerical  methods that are available in linear algebra. 

Whilst  system theoretic ideas have also played a role before in N M R ,  (see e.g. 
[4]), most  o f  the influence that systems theory had on N M R  has been through the 
input-output  formulation.  However ,  the authors of  this paper  are not  aware of  a 
systematic discussion of  state-space methods  applied to N M R  problems, especially 
for 2-D experiments. In [5,6] some state space methods are used to analyze 1-D 
N M R  experiments f rom a statistical point  o f  view. With the results that  are pre- 
sented in this paper  we hope to be able to provide the basis for the application of  sys- 
tem theoretic methods  to the design and analysis of  N M R  experiments. 

A general description of  N M R  experiments is presented in the following section 
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where it is shown that  the dynamics of an N M R  experiment can be represented by 
a bilinear system. The method which is used to reformulate the master equation as a 
bilinear system is the well-established technique of  the translation of  the density 
matrix formulation to the language using superoperators in Liouville space (see 
e.g. [4]). An important  point is, however, that the state of  the bilinear system at a 
particular time is given by the difference of  the density matrix at this time and the 
equilibrium density matrix. Use of  this setup allows us to incorporate relaxation 
into the description and allows for the use of  stability results to analyze N M R  
experiments. It should, however, be stressed that our description using the frame- 
work of bilinear systems is mathematically equivalent to the framework which uses 
the master equation as it is usually used in the analysis of N M R  experiments. 

In the following section we discuss the solution of  the bilinear system given a con- 
stant input. The solution that we present is exact and given through basic functions 
of  the system matrices. In this way we use an approach which is different from 
approaches which use approximate solutions to the master equation, such as those 
which are based, for example, on the product  operator formulism. Of course, due to 
the above mentioned equivalence of the bilinear system with the master equation, 
the exact solution that we use is equivalent to an exact solution of  the master 
equation. 

Next we introduce a general description of  2-D experiments. We obtain a closed 
form representation of  the spectrum of a 2-D experiment using the matrices that 
characterize the spin system and the particular experiment. We also discuss approx- 
imations such as the pulse approximation and the low-relaxation approximation. 
Using these approximations, simplifications for the expressions of  the spectrum 
can be obtained. In our description none of the otherwise standard assumptions 
have to be made such as the high-temperature approximation. 

In the final section standard experiments are discussed within our framework. 
We consider a 1-D basic pulse experiment, 2-D J-spectroscopy and a COSY 
experiment. The experiments are chosen to serve as basic examples for the tech- 
niques that are developed in this paper. In the 1-D experiment, the simulated spec- 
t rum shows the loss of power of  the 90 degree pulse away from resonance. The 
examples were coded in MatLab and only a few lines of code were necessary to pro- 
duce the simulations. 

In this paper we will make repeated use of basic identities on the Kronecker prod- 
uct ® and the vec operation (see e.g. [7]). The vec operation takes a matrix A and 
produces a vector by stacking the columns of  A below one another. We denote by 
A 7" the transpose of  the matrix A and by A* the adjoint of the matrix, i.e. A* is the 
transpose together with a complex conjugation of  the matrix entries. 

2. Basic setup 

In this section we present an abstract approach to the basic formulation of  
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N M R  experiments. Starting with the master equation we derive what we call the 
master system in error vector representation, which is a biUnear system. We then 
discuss general state space transformations, which are equivalent to changing the 
coordinate system from the laboratory frame to the rotating frame. The role which 
stability plays in the context of  relaxation is then pointed out. Stability of  the spin 
system, while being a natural concept, is also an important  technical property for 
the subsequent analysis of pulse experiments. Given this abstract framework it is 
then quite straightforward to write down a closed form representation of  the 
Fourier t ransform ofa  1-D experiment. 

In defining the framework within which we are working we start with the master 
equation (see e.g. [4]) and combine with it the measurement equation, i.e. we 
assume that the dynamics of  a spin system are described by the so-called master  
system: 

b(t)  = - i [ H ( t ) ,  a(t)] - /~[a( t )  - O'eq] , or(to) = ao , 

y( t )  = trace(Met( t )) ,  t>~to. 

Here a(t) is a n x n matrix-valued function. The n x n matrix-valued function 
H(t ) ,  t >>. to is the Hamiltonian of the system. The n x n matrix Creq is the equilibrium 
density matrix. The symbol k stands for the relaxation super operator. The n x n 
matrix M is called the measurement  matrix.  The  first equation is the well-known 
master  equation. The  second equation is called the measurement  equation. The  
function y is the function of measured values, i.e. the signal given by the induced 
magnetization. 

A S S U M P T I O N S  

Throughout  the paper we will make the following assumptions. 

AI :  The Hamiltonian H(t )  is a n x n hermitian matrix-valued function which 
can be decomposed into two hermitian parts H1 and/ /2 ,  i.e. H( t )  = H1 + H2(t), 
t~> to, where H1 is a constant matrix and H2(t) = Y'~=I uj(t)H2j,  with H2j a con- 
stant hermitian matrix, and uj a scalar real-valued funct ion, j  = 1 , 2 , . . . ,  k. Then 
the master system can be written as 

k 

6"(t) = - i [ H l ,  or(t)] - i ~ uj(t)[H2j, cr(t)] -/~[cr(t) - tTeq] , or(to) = aO , 
j = l  

y( t )  = t race (Ma( t ) ) ,  t>~to. 

• A2: The n x n equilibrium matrix aeq is hermitian and commutes with Hi,  i.e. 
[H1, ~Teq] : O o 
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• A3: I f  R is the matr ix  representation of  R, i.e. Rvec(~r) = vec(R(cr)) for each 
n × n matr ix  or, then we assume that  R is hermitian. 

For  our purposes it is often more  convenient to rewrite the master  system as a 
system whose underlying differential equation is a vector differential equation, 
rather  than a matr ix differential equation. This transition is simply a rewriting of  
the basic equations in the language of  superoperators.  To this effect we define 

v(t) := vec(cr(t)), t>~to, 

Veq : :  vec(Creq), 

At,  : =  - i ( I  ® H1 - H z ® I ) ,  

N j : = - i ( I ® H 2 d - H ~ . ® I ) ,  j =  1 , . . . , k ,  

c := (vec(MT)) T , 

(the identity matrix I has the same dimensions as the matrices H1 and H2j, 
j --- 1 , . . . ,  k), and let R be the matrix representation of  the super operator  R. By sim- 
ple application of  results on Kronecker  products and the vec operation we have that  
the master  system is equivalent to 

~( t )=Avv ( t )+( j= l  u j ( t )Nj )v ( t ) -R(v ( t ) -Veq) ,  v(to)--vo, 

y(t) = cv(t), t>~to. 

This system is called the master system & vector representation. A further  equivalent 
representation of  the master  system is obtained if we consider the error function e 
between v and 7deq , i.e. for t i> to 

e(t) := v(t) - Veq. 

Using the assumption that  [//1, tYeq] = 0 , which is equivalent t o  Avveq = 0, we 
obtain 

k(t) = Ae(t) + uj(t)Nj e(t) + ~ bjuj(t) , 
j = l  j = l  

e(to) ---- e0, 

y( t )=ce( t )+Co,  t>~to, 
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where A := Av - R, bj : =  Njveq, j = 1 , . . . ,  k, e0 = v(0) - ~3eq and co = C73eq. This 
system is called the master system in error vector representation. Note  that  if co -- 0, 
this system is a s tandard continuous-t ime bilinear state space system (see e.g. [8]). 
We will therefore also refer to e as the state of  the system, u l , . . . ,  Uk as the inputs of  
the system a n d y  as its output. Note  that  co = 0 is equivalent to the equilibrium state 
of  the system not  generating an observable signal, which is the case in all s tandard 
experimental  setups. F rom now on we therefore make the assumption 

• A4: co = CVeq = O. 

In the following proposit ion it is shown that a suitable coordinate t ransforma- 
tion can simplify the bilinear equation. This operat ion is simply a generalization of  
the s tandard t ransformat ion of  the labora tory  frame to the rotat ing frame. 

PROPOSITION 1 
Let  

i~(t) = Ae(t) + uj(t)Nj e(t) + Z bjuj(t ) , 
j=l  

e(to) = e 0 ,  

y(t) = ce(t), t>~to, 

be a master  system in error vector representation, with the above assumptions 
and notat ion.  Let T(t) : =  e F(t-t°), t>~to, for some n x n matrix F and set x(t) 
:--- T(t)e(t),  t>~to. I f  T( t )AT- l ( t )  = A, for t>~to, then the master  system in error 
vector  representat ion is equivalent to the following system with state vector x: 

k k 

k(t) = (A + F)x(t)  + Z u j ( t ) T ( t ) N j T - l ( t ) x ( t )  + ~ T(t)bjuj(t),  
j=l  j= l  

x(to) := xo := eo, 

y(t) = cT - l ( t )x ( t ) ,  t>~to. 

Proof  
Note  that  ~ r ( t ) = F T ( t ) ,  t>~to. Since x ( t ) =  T(t)e(t), it follows that k(t) 

= T(t)e(t) + T(t)k(t) = Vx(t) + T(t)k(t),  t>>. to. Therefore, 

k k - 

5c(t) = rx( t )  + T(t)k(t) = Fx(t) + T(t) Ae(t) + Z u j ( t ) N j e ( t )  + ~_,bjuj(t) 
j=l  j=l  

k 

= Fx(t) + T( t )AT- l ( t )T ( t )e ( t )  + ~-~uj ( t )T( t )NjT- l ( t )T( t )e( t )  
j=l 



5 2  R . J .  Ober, E.S. Ward/System theory and NMR experiments 

k 

+ r(t)6juj(t) 
j = l  

k k 

= (A + F)x( t )  + Z u j ( t ) T ( t ) N j T - l ( t ) x ( t )  + Z T(t)bjuj( t ) ,  
j = l  j = l  

t>~to , 

withx(to)  = T(to)e(to) = e(to) = eo and 

y(t)  = ce(t) = c T - l ( t ) T ( t ) e ( t )  = c T - l ( t ) x ( t ) ,  t>.to. [] 

As is stands, this result is not  very useful. But in a concrete s i tuat ion it will turn  
out  that ,  as would  of  course be expected f rom the very s tandard  results on changing  
the coordinate  system, for specifically chosen inputs and matr ix  F,  the terms 

k 1 k • • • Y'~=I u j ( t ) T ( t ) N j T -  (t) a n d ~ = l  T( t )b ju j ( t )are t lmemvar lan t .  
The stability of  the master  system in error  vector representat ion will be an impor-  

tant  technical tool in later sections. A condi t ion for the stability of  the system is 
given in the following Proposi t ion.  The system is called stable if for each e0, 
etAe0 ~ 0 as t ~ c~. The system is therefore stable if in the absence of  any input,  the 
state vector  decays to zero. This means  that  the system approaches  equil ibrium as 
t - -+ (X). 

P R O P O S I T I O N  2 

Assume that  Av commutes  with R. Then the system is stable if all eigenvalues of  
R are in the open right half  plane. 

P r o o f  
This follows f rom s tandard  stability results (see e.g. [9]). []  

I f  we assume that  the system is in state e0 at t ime 0 and no input  is applied for 
t i> 0 the measured  signal is given by 

y(t) = cetAeo, t>~O. 

If the system is stable we can apply the Fourier  t ransform and we obta in  for 
w E  N, 

• (y)(w)  = cetAeoe-iWtdt = C et(A-i~I)dt eo 

= c((A - iwI ) - l ) e  t(A-iwl) ]~)eo = c ( i w I -  A)- le0 .  
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3. Inputs and pulses 

We now present an abstract solution to the master system in error vector 
representation given a constant input. The importance of this result is that  the 
solution is given in terms of the underlying system matrices and can therefore be 
easily computed using a numerical linear algebra package such as MatLab.  

The relevance of  analyzing the system given a constant input is that in a suitable 
rotat ing frame (Proposition 1) the system with certain sinusoidal inputs is 
constant.  

PROPOSITION 3 
Let 

2(t) = Ax(t)  + Njut(t) x(t) + Z bjuj(t) , 
j=l 

X( to ) = Xo , 

y(t) = cx(t) 

b e t h e  master system in error vector representation. Let the inputs to the system 
be given by 

/ 

uj(t) = 
to <~ t <~ T , 

[ O, t > T ,  

where u ° E N. Assume that Ap := A + ~ = 1  o u) Nj is invertible, then 

; [e (t-to)A, -- []Aplbp q- e(t-t°)A'xo, to <~ t <<. T ,  

x(t) 

I e ( t -T )A([e  (T-t°)Ap -- I]Aplbp + e(T-to)Apxo) , t > T ,  

wherebp = ~-~tl bj u°. 

Proof  
Note  that for to ~< t ~< T we have 

5c(t) = Ax(t)  + Nj x(t) + ~ bju? = Apx(t) + bp . 

Hence 

fto t x(t) = e(t-s)A'bpds + e(t-t°)A'xo. 

Since Ap is invertible we therefore have 
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x(t) = (etAp(-Apl)[e -sAp Itto])bp + e(t-t°)Apxo 

= [e (t-t°)Ap - I]Ap'bp + e(t-t°)Apxo. 

The expression for t > T follows immediately from here. [] 

Note that a similar expression was derived in [6]. In N M R  calculations often 
the approximation 

k 
Ap =_ Z u° 

j= l  

is used (see e.g. [4,10]) while a pulse is applied. We call this approximation thepulse 
approximation. Given the pulse approximation the solution in the previous propo- 
sition is simplified. 

P R O P O S I T I O N  4 

Let the notation and assumptions be given as in the previous proposition. 
Moreover, assume the pulse approximation and that bj = Nj~)eq , j = 1 , . . . ,  k, for 
some vector 73eq. Then 

k 0 k 0 

(e(t-to)(~-~=l ~Nj) I)Veq Jr- e (t-t°)(~'~=l u)NJ)x0, 

x ( t )  = o 

e('-r)A ((e(r-'°)(~-'~ =, ~ )  - I)veq + e (r - ' ° ) (~  =' qNAxo,) , t > T ,  

-- I e(t--to)(E)klu~Nj)(73eq "q- xO) -- ~eq, to <~t<~ T ,  

e (t-rlA e ( - t ° l (~4NA(V~q +xo) - Veq , t > T .  

to <~t<.T, 

Proof  

The proof follows by verification. [] 

4. Two-dimensional  experiments 

Using the general setup introduced in the previous sections we can now analyze 
two dimensional pulse experiments. In this section we will present a general theory 
of these experiments from our point of view. The aim is to derive a general represen- 
tation of the spectrum of a 2-D experiment in terms of the underlying system 
matrices. 
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We assume that  the spin dynamics are governed by the master  system in error  
vector  representat ion,  

b(t) = Ae(t)  + uj(t)Nj e(t) + bjuj(t), 
k,j=l j=n 

e(to) = e0, 

y(t) =- ce(t) ,  t>~to. 

We define a family of  input  vector functions ((u t')tl ~>0) in the following way. For  
each tl >~ 0 letfi, i = 1,2, 3, be an input  defined on a t ime interval Ai, i = 1,2, 3, such 
that  if the system is in state el at the beginning of  the interval Ai, i = 1,2, 3, then the 
system will be in state 

e 2 = T i e l + e  ° ,  i =  1 ,2 ,3 ,  

at the end of  the interval where T/, is a constant  matrix,  and e ° is a constant  vector,  
i = 1,2, 3. Tha t  this representat ion is justified follows f rom Propos i t ion  3 and 
Propos i t ion  4 since a combina t ion  of  pulses and evolut ion periods leads to such an 
affine t rans format ion  of  the state of  the system. 

For  tl >f 0 the input  u tl is then defined by 

J 
A ,  

0, 

A ,  
U tl 

I °, f3, 

[o, 

O~<t~<Al, 

Al < t<~A1 + k i t h ,  

A1 +kl tn  < t~<Al + A2 + k i t 1 ,  

A n + A 2 + k l t l  < t ~ < A l + A 2 + t l ,  

An + A 2 + / 1  < t~<Al + A 2 +  A3 + t n ,  

t>~A1 + A2 + A3 + t l ,  

where 0 ~ k l  ~< 1 is fixed and determined by the part icular  experiment.  I f  kl = 0 or 
kl --- 1 then the obvious simplifications can be given. For  each input  u t' , tl/> 0, the 
ou tpu t  y of  the system is measured  for t~> A1 + A2 + A3 + tl and set for t2 ~>0 

s ( t l ,  t2) :~--- y(A1 + A2 + A3 "JI- tl + t2) = cx(A1 + A2 + A3 + tl + t2). 

Fo r  each tl/> 0 the state xt, of  the system at t ime A1 + A2 + A3 + tl is given by 

T3 e k2/t A ( T2ekl 'l A xt~ = (Tlxo + e °) + e °) + e ° 

and 
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x(A1 q- A2 Jr- A3 --}- tl + t2) = et2Axt, 

= et2A(Z3ek2t~A(Z2ek~hA(ZlXo q- e O) d- e O) q- e O) 

= e aA Tae k2tla T2e klt'A TlXo + e aA 7"3 ek2tlA T2ekmAe° 

+ e t2A T3ek2tlAe 0 + et2AeO. 

Therefore 

S(tl, t2) ------ cet2A(T3ek2hA(Z2ek~hA(ZlXo d- e °) q- e °) + e °) 

= cet2A T3ek2tlA T2ekl tlA Zlxo q- ce t2A T3 ek2tlA T2ekltlAe 0 

"-1- ce--t~A ,-r,l 3 e'~2t~A-0c2 + cet~Ae 0 . 

We would now like to calculate the two dimensional Fourier  t ransform of  s, 

/0 /0 G(wl  , 602) = S( tl , t2)e -it'w' e -it2w2 dtl  dt2 

= c(iw2I - A)-I[T3P(w~)(TIxo + e °) 

+ T3(i~1I - k2A) - l e  ° + 60(wl)e°], 

where P(wl)  := f o  ek2tlA Z2ekl tlAe--iwl ,, dh and 60 (wl) stands for the delta function 
with mass concentrated at 0. Ifxo = 0, which is the case if the experiment is started 
at equilibrium, then 

G(wl,w2) = c ( i w 2 I -  A) - I [T3P(wl )e  ° + T 3 ( i w l I -  k 2 A ) - l e  ° + 60(wl)e°]. 

I f  no pulse is applied during the evolution period, i.e. if 7'2 = I and e ° --- 0, then 

G(wl,w2) = c ( i w 2 I -  A ) - l [ T 3 ( i c o l I -  A) -1 ( r lxo  + e °) + 60(wl)e°]. 

Moreover ,  ifxo = 0, then 

G(wl,w2) = c ( i w 2 I -  A ) - l [ T 3 ( i w l I -  A)  - l e  ° + 60(wl)e°]. 

I f  on the other hand there is no third pulse, then 7'3 = I and e ° = 0, therefore 

G(wl, w2) = c(iw2I - A ) - l [p (w l  )( Tlxo + e °) + ( iwlI  - k2A)-le°] . 

Moreover ,  ifxo = 0 then 

G( wl , w2 ) = c( iw2 I -- A ) -  l [ p ( wl )e° 1 + ( iwl I - k2 A ) -  l e°] . 

In the following lemma a result is given which shows that  P(wl)  can be computed  
using only linear algebra operations. Therefore G(wl, w2) can be calculated by only 
using matr ix  computat ions.  
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LEMMA 1 
Let A be a n × n matr ix  such that  the eigenvalues of  A are all in the open  left hal f  

plane. Then  for kl,  k2 1> 0 such that  kl + k2 = 1 and T an n × n matrix,  the integral 

P(w) : = / 0  °~ e tk2A TetklA e-it~dt 

exists and  

vec(e(w)) = [iu! - (I ® (k2A) + (klA r) ® I)] -1 vec(T).  

I f  T = I, then e(w) = ( i w I -  A) -1, w E ~. 

Proof  
Note  that  since the eigenvalues of  A are in the open left half  plane the integral 

P(~v) exists for all w E N. By a s tandard  result ([11]) on Lyapunov  equat ions  P(w) is 
the unique  solut ion to the Lyapunov  equat ion 

(k2A - iwI)P(w) + P(w)(klA)  = - T .  

The solut ion X to the matr ix  equat ion  

A X +  X B =  C 

can be wri t ten as [7,11] 

vec(X) = (I  @ A + B r ® I)-1 vec(C). 

Hence 

vec(e(u))  = [I ® (k2A - iwI) + (klA r) @ I ] - l vec ( -T )  

= [iwI -- (I ® (k2A) + (klA T) @ I)]- lvec(T) .  

The case for T = I is obvious. []  

I f  we assume the pulse approx imat ion  and also assume that  dur ing periods At,  
A2, A3 only pulses are applied and no evolut ion takes place, then we obtain 

s( tl, t2) = cet2A ( T3 (ek2t~A T2(ekI'~A T1 (Xo + ~)eq) 

--  ekltlA~3eq + "13eq)--ek2tlA'l)eq -[- 2)eq ) -- ~3eq) , 

tl, t2 ~> 0. This  expression will be more  compac t  if we also assume the low-relaxation 
approximation (in the evolution period), by which we assume that  in the above 
expression 

- -ekl t lAveq --}- Veq :~ O, --ek2tlAueq -t- Ueq :~ O . 

This approx ima t ion  can be justified f rom the following point  of  view. In an actual  
exper iment  measurements  are only obta ined for a finite range of  tl values. I f  in this 
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range relaxation is not significant, then the approximation has some validity. 
Therefore, with both the pulse approximation and low-relaxation approximation 

S(tl, t2) = cet:A[T3ekEt'AT2ek't'ATl(XO q- 1)eq) -- Veq] , 

h,  t2 >/0. In a final simplification step we assume that 

cetAveq = O, t ~ O .  

If  At and R commute  this means that 

0 -~- cetAueq = cetRetA'~)eq -~- cetRT)eq ~ t ) O  

where we used tha t  etAt'~)eq --'-- ~)eq for t~>0, as Av~)eq --- 0. We call this the uniform 
relaxation assumption. This assumption means for example that if the magnetiza- 
tion is coherently aligned with the z-axis, then relaxation to the equilibrium will not 
introduce any observed magnetization. With this additional assumption we have 
that 

S( tl , /2) ---- cet2A T3 ek2tlA T2 ekltlA Zl (Xo H- Veq) , 

tl, t2/> 0. The two dimensional Fourier transform ofs  is then given by 

G(Wl, w2) = c(ic02I - A) -1T3P(cOl) T1 (Xo q- Veq), 

0dl,Od2 E ~.  

5. Example  

In this section we consider basic N M R  experiments for a weakly coupled spin 
system consisting of two nuclei of spin ½. The three experiments which we consider 
were chosen so as to be simple examples of  various aspects of the abstract computa-  
tions which were performed earlier. 

5.1. MASTER EQUATION 

In this subsection we set up the standard master equation for a weakly coupled 
two spin system. 

Let 3`1, 3'2 be the two gyro-magnetic ratios, Sl, s2 the shielding constants, B0 the 
strength of  the strong magnetic field in which the spins are precessing and h 
Plancks' constant divided by 2n. Let J be the coupling constant and let 

'[°110] 1E°, o'] 'Ea0 °1 P x = 2  ' P Y = 2  ' P ~ = 2  1 

be the Pauli matrices. Set Ixl : - -Px®h,  Ix2 :=I2®Px, Iyl := Py ® 12, Iy2 := 12 ® Py, 
Izl := Pz ® 12, Iz2 := 12 ® Pz. Then the Hamiltonian that stands for the effects of 
the strong magnetic field is as usual given by 
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H1 ----- 3q(1 - S l ) h n o [ z l  -t- '~2(1 - s2)hBolz2 q- J[zlIz2 

_ 1 0 ul - u a - ] l  0 0 

2 0 0 - u l  +u2  - J  0 ' 

0 0 0 --//1 - -  //2 q- .~ 

where ui := 7i(1 - si)hBo, i = 1,2 and J = ~. Also let H2,1 := ~qhlxl + "y2hlx2 and 
H2,z := 71hlyl + 72hly2 and assume that the input signals are given by 

Ul(t) := Bx cos(wp(t  - to + At)) ,  

u2(t) := Bl  s in(wp(t  -- to + A t ) ) ,  

t~> to, where At>~0 is a fixed time interval and B1 is the strength of  the radiofre- 
quency field. The measurement  operator  is given by M = Ix1 + Ix2 + ilyl + ily2. 
The equilibrium density matr ix o "eq is given by 

1 - H i .  t eq eq eq 
ry eq : :  trace(e~HI)  e ~  : :  alag[cr I , cr 2 , cr 3 , cre4q), 

where k is the Boltzmann constant  and T the temperature.  Moreover  let k be an 
unspecified relaxation superoperator.  Then the master  system can be writ ten as 

2 

(r(t) = - i [Hl ,~r( t ) ]  - i ~ uj(t)[H2d, cr(t)] - R[a(t) - O'eq] , cr(t0) ---- or0, 
j = l  

y ( t )  = t r a c e ( M e t ( t ) ) ,  t>. to .  

Note  that  in our setup the condition A2 is satisfied, i.e. [HI, O'eq] ~- O. 

5.2. M A S T E R  S Y S T E M  I N  E R R O R  V E C T O R  R E P R E S E N T A T I O N  

We now proceed to translate the above master  system to the master  system in 
error  vector representation. We have that 

a = - i ( I ®  Ha - HIT ® 1 / - g 

= - idiag(O, - u 2  - ~l, -Ul  - ~1, - u l  - u2, ~ + ~1, O, - u l  + u2, - u l  

-~" J , / / 1  -{- . J , / J l  - / / 2 , 0 , - / / 2  -~- J ,  b'l -~-//2, b'l - -  J , / - /2  - J ,  0 )  - R ,  

where R is the matr ix  representation of  the relaxation superoperator  R (we denote 
by d i a g ( d l , . . . ,  dn) the diagonal matrix whose diagonal entries are d l , . . . ,  d,). For  
simplicity of  presentation we are going to assume that the matr ix  representat ion R 
of  the relaxation superoperator is diagonal, i.e. R = d i a g ( r l , r 2 , . . .  ,rl6). This 
implies also that  the system matrix A is diagonal. Moreover  we have that  
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c ( v e c ( M r ) ) r = ( O 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 ) .  

By the representation of  the equilibrium density matrix o ~q it follows that 

Veq : :  Y e c ( o  "eq) m_ eq eq eq (O" 1 , 0 , 0 , 0 , 0 ,  tY 2 , 0 , 0 , 0 , 0 ,  O" 3 ,0 ,O ,O ,O ,O ' e 4q )  T .  

Therefore co := CVeq = 0 and assumption A4 is satisfied. Hence the spin system 
can be described by the following master  system in error  vector representation: 

(±) k(t)  = Ae ( t )  + uj ( t )Nj  e(t) + Z bjuj(t) , 
j= l  j= l  

e(to) = e0 := vec(ao) - Veq , 

y( t )  = ce(t)  , t>lto.  

5.3. S T A T E  S P A C E  T R A N S F O R M A T I O N  

Let for t/> to 

T(  t) := e -(t-t°)i~pP" ® e -(t-t°)i~pP" @ e (t-to)i~pP" @ e (t-t°)iwpP" . 

With the state r(t) := T( t )e ( t ) ,  t>~to the master  system in the ' rotat ing frame'  is 
therefore given by 

k(t) = Arr( t )  + B1Nrr(t)  + brB1, r(to) = ro := e0, 

y( t )  = Cr(t)r(t) , 

where 

A r : =  idiag(O, u2 - cop + fl, ul - cop + fl, ul + u2 - 2cop, --112 

a t- %0 --  ~], O, lJ 1 --  P2,111 --  COp --  f[, --111 -t- COp --  f[, --111 

+ 112, 0,  112 --  COp --  "[,--111 --  112 -'~ 2LOp,--111 -J- COp 

+ J , - u 2  + cop + J ,0 )  - R ,  

- i h  
N. := 2 (72/8 ® Q(At) + 7~I4 ® Q(At)  ® h - 7212 ® Q ( - A t )  ® 14 

- 7l Q ( - A t )  ® h ) ,  

br : =  Nrveq 

Cr(t) := e(t-t°)iWpc, t>~to , 

with 
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Q(t) = ( 0 e-i°~/) 
eiW~t 0 , t >>.0. 

Note that B1 = 0 describes the situation when no input is applied. In what follows 
we will consider the following modification of the measured signal 

yr(t) := e-(t-t°)i~py(t) , t>lto. 

This has the advantage that the frequency range of the signal will be shifted from 
the MHz range to the Hz and kHz range. The corresponding master system in error 
vector representation is then given by 

?(t) = Arr(t) + B1Nrr(t) + brB1, r(to) := ro, 

yr(t)  = cr( t ) ,  t>/to.  

5.4. S I M U L A T I O N S  

We are going to treat the homonuclear case and therefore assume that 
3'1 = 3"2 =: 3'. We first consider a basic one-dimensional experiment in which a sin- 
gle 90-degree pulse around the y-axis is followed immediately by the detection per- 
iod. We assume that the spin system is in equilibrium at to = 0, i.e. x0 = 0. In 
Figs. 1 (a), 1 (b) and 1 (c) the results of simulations are shown for a proton spectrum 
on a 500 MHz instrument. The coupling constant J is J = 30 Hz. In Fig. 1 (a) a 
simulation of one-dimensional spectrum is given which is calculated using the pulse 
approximation. In Fig. 1 (b) the same experiment is simulated using the accurate 
calculations based on Proposition 3 using a strong short pulse. The simulation of 
the same result is shown in Fig. l(c) for a soft long pulse. The lack of uniformity of 
the excitation over the frequency range is clearly seen. The pulse approximation is 
equivalent to one of the approximations which are assumed in the product operator 
formulism and in most treatments using density matrix calculations. It is well 
known that simulations based on such approximations predict uniform excitation 
over the whole frequency range. It is clearly established in Fig. 1 (c) that a simula- 
tion based on the analytic solutions presented in Proposition 3 describes the fre- 
quency dependence of the excitation and distinguishes between the effects of strong 
and soft pulses. 

In order to demonstrate the use of Lemma 1 we are going to show a simulation 
of a simple homonuclear J-spectroscopy experiment, where a 90-degree initial 
pulse around the y-axis is followed by a 180-degree pulse around the y-axis in the 
middle of the evolution period. In Fig. 2 the spectrum is shown for a weakly coupled 
spin system with J = 30 Hz. The simulation was performed using the accurate for- 
mulation for the spectrum. 

In the final simulation we consider a basic COSY pulse sequence, i.e. an initial 
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Fig. l(a). One-dimensional spectrum of a weakly coupled two spin system with coupling constant 
J = 30 Hz, simulated using the pulse approximation. 
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Fig. 1 (b). Same spin system as in Fig. 1 (a), simulated using accurate calculations, with a short strong 
pulse. 
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Fig. l(c). Same spin system as in Fig. l(b), simulated using accurate calculations, with a long soft 
pulse. 
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Fig. 2. Two dimensional J-spectroscopy of a weakly coupled two spin system with coupling constant 
J = 30 Hz. The spectrum was simulated based on the accurate calculations. 
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Fig. 3(a). Two dimensional COSY spectrum of  the same system as in Fig. 2. The spectrum was simu- 
lated based on the accurate calculations. 
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Fig. 3(b). Two dimensional COSY-45 spectrum of the same system as in Fig. 3(a). The spectrum was 
simulated based on the accurate calculations. 
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90-degree pulse followed by another  90-degree pulse following the evolution 
period. 

In Fig. 3(a) the COSY spectrum is shown for a weakly coupled spin system with 
J = 30 Hz. It is the same system which was considered in the simulation of  the J -  
spectroscopy experiment, Note  the strong axial peaks in the spectrum. The calcula- 
tion was performed using the accurate description, i.e. without the various approxi- 
mations.  In Fig. 3(b) a COSY-45 experiment is simulated for the same system. 
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